skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, Charles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Western Antarctic Peninsula is undergoing rapid environmental change. Regional warming is causing increased glacial meltwater discharge, but the ecological impact of this meltwater over large spatiotemporal scales is not well understood. Here, we leverage 20 years of remote sensing data, reanalysis products, and field observations to assess the effects of sea surface glacial meltwater on phytoplankton biomass and highlight its importance as a key environmental driver for this region’s productive ecosystem. We find a strong correlation between meltwater and phytoplankton chlorophyll-a across multiple time scales and datasets. We attribute this relationship to nutrient fertilization by glacial meltwater, with potential additional contribution from surface ocean stabilization associated with sea-ice presence. While high phytoplankton biomass typically follows prolonged winter sea-ice seasons and depends on the interplay between light and nutrient limitation, our results indicate that the positive effects of increased glacial meltwater on phytoplankton communities likely mitigate the negative impact of sea-ice loss in this region in recent years. Our findings underscore the critical need to consider glacial meltwater as a key ecological driver in polar coastal ecosystems. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Abstract Imaging spectroscopy is a powerful tool used to support diverse Earth science and applications objectives, ranging from understanding and mitigating widespread impacts of climate change to management of water at farm‐scale. Community studies, such as those deployed by NASA's Surface Biology and Geology and ESA's Copernicus Hyperspectral Imaging Mission for the Environment, have offered new and tangible insights into user needs that are then incorporated into overall mission planning and design. These technologies and tools will be key to develop and consolidate downstream services for users and resource management, given the current pressures on the environment posed by climate change and population growth. This process has highlighted the degree to which planned mission capabilities are responsive to community needs. In this study, we analyze user requirements belonging to the Italian Copernicus User Forum and to the user pool of NASA's Surface Biology and Geology community for the synergic use of hyperspectral imaging technology, providing a reference for the development of earth observation services and the consolidation of existing ones. In addition, potential cross‐mission coordination is analyzed to highlight key benefits—(a) addressing shared community needs around products requiring more frequent temporal revisit and (b) shared resources and community expertise around algorithm development. This paper discusses the critical role of early engagement with users to establish a community of practice ready to work with high spatial resolution imaging spectroscopy data sets. The main outcome is a guide for the synergetic use of hyperspectral mission and data together with the identification of the main gaps between user needs and satellite capabilities influencing the development of key national and trans‐national downstream services. 
    more » « less
  3. Abstract Beaver engineering in the Arctic tundra induces hydrologic and geomorphic changes that are favorable to methane (CH4) production. Beaver-mediated methane emissions are driven by inundation of existing vegetation, conversion from lotic to lentic systems, accumulation of organic rich sediments, elevated water tables, anaerobic conditions, and thawing permafrost. Ground-based measurements of CH4emissions from beaver ponds in permafrost landscapes are scarce, but hyperspectral remote sensing data (AVIRIS-NG) permit mapping of ‘hotspots’ thought to represent locations of high CH4emission. We surveyed a 429.5 km2area in Northwestern Alaska using hyperspectral airborne imaging spectroscopy at ∼5 m pixel resolution (14.7 million observations) to examine spatial relationships between CH4hotspots and 118 beaver ponds. AVIRIS-NG CH4hotspots covered 0.539% (2.3 km2) of the study area, and were concentrated within 30 m of waterbodies. Comparing beaver ponds to all non-beaver waterbodies (including waterbodies >450 m from beaver-affected water), we found significantly greater CH4hotspot occurrences around beaver ponds, extending to a distance of 60 m. We found a 51% greater CH4hotspot occurrence ratio around beaver ponds relative to nearby non-beaver waterbodies. Dammed lake outlets showed no significant differences in CH4hotspot ratios compared to non-beaver lakes, likely due to little change in inundation extent. The enhancement in AVIRIS-NG CH4hotspots adjacent to beaver ponds is an example of a new disturbance regime, wrought by an ecosystem engineer, accelerating the effects of climate change in the Arctic. As beavers continue to expand into the Arctic and reshape lowland ecosystems, we expect continued wetland creation, permafrost thaw and alteration of the Arctic carbon cycle, as well as myriad physical and biological changes. 
    more » « less
  4. Abstract. Studies in recent decades have shown strong evidence of physical and biological changes in the Arctic tundra, largely in response to rapid rates of warming. Given the important implications of these changes for ecosystem services, hydrology, surface energy balance, carbon budgets, and climate feedbacks, research on the trends and patterns of these changes is becoming increasingly important and can help better constrain estimates of local, regional, and global impacts as well as inform mitigation and adaptation strategies. Despite this great need, scientific understanding of tundra ecology and change remains limited, largely due to the inaccessibility of this region and less intensive studies compared to other terrestrial biomes. A synthesis of existing datasets from past field studies can make field data more accessible and open up possibilities for collaborative research as well as for investigating and informing future studies. Here, we synthesize field datasets of vegetation and active-layer properties from the Alaskan tundra, one of the most well-studied tundra regions. Given the potentially increasing intensive fire regimes in the tundra, fire history and severity attributes have been added to data points where available. The resulting database is a resource that future investigators can employ to analyze spatial and temporal patterns in soil, vegetation, and fire disturbance-related environmental variables across the Alaskan tundra. This database, titled the Synthesized Alaskan Tundra Field Database (SATFiD), can be accessed at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) for Biogeochemical Dynamics (Chen et al., 2023: https://doi.org/10.3334/ORNLDAAC/2177). 
    more » « less
  5. Abstract. Permafrost-affected ecosystems of the Arctic–boreal zone in northwestern North America are undergoing profound transformation due to rapid climate change. NASA's Arctic Boreal Vulnerability Experiment (ABoVE) is investigating characteristics that make these ecosystems vulnerable or resilient to this change. ABoVE employs airborne synthetic aperture radar (SAR) as a powerful tool to characterize tundra, taiga, peatlands, and fens. Here, we present an annotated guide to the L-band and P-band airborne SAR data acquired during the 2017, 2018, 2019, and 2022 ABoVE airborne campaigns. We summarize the ∼80 SAR flight lines and how they fit into the ABoVE experimental design (Miller et al., 2023; https://doi.org/10.3334/ORNLDAAC/2150). The Supplement provides hyperlinks to extensive maps, tables, and every flight plan as well as individual flight lines. We illustrate the interdisciplinary nature of airborne SAR data with examples of preliminary results from ABoVE studies including boreal forest canopy structure from TomoSAR data over Delta Junction, AK, and the Boreal Ecosystem Research and Monitoring Sites (BERMS) area in northern Saskatchewan and active layer thickness and soil moisture data product validation. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band airborne SAR data (https://uavsar.jpl.nasa.gov/cgi-bin/data.pl). 
    more » « less
  6. Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. The data presented here document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska. We analyzed very high resolution satellite imagery to digitize beaver dams and stream channels from the years 2006, 2011, 2014, 2015, 2017, 2019, 2020, and 2021. We also acquired Uncrewed Aircract System (UAS) imagery on 06 August 2021 and created a 5 centimeter (cm) resolution orthophoto mosaic and a 15 cm resolution digital surface model. Our data show that beaver engineering between 2006 and 2021 caused a systems-level response to a small tundra stream that promoted lateral expansion of the creek valley into an ice-rich permafrost hillslope and development of a diffuse network of stream channels expanding the area of potential beaver engineering in the future. The datasets support the findings presented in this accepted paper - Jones, B.M., K.D. Tape, J.A. Clark, A.C. Bondurant, M.K. Ward Jones, B.V. Gaglioti, C.D. Elder, C. Witharana, and C.E. Miller. Accepted. Multi-dimensional remote sensing analysis documents beaver-induced permafrost degradation, Seward Peninsula, Alaska. Remote Sensing. 
    more » « less
  7. Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. The data presented here document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska. We analyzed very high resolution satellite imagery to digitize beaver dams and stream channels from the years 2006, 2011, 2014, 2015, 2017, 2019, 2020, and 2021. We also acquired Uncrewed Aircract System (UAS) imagery on 06 August 2021 and created a 5 centimeter (cm) resolution orthophoto mosaic and a 15 cm resolution digital surface model. Our data show that beaver engineering between 2006 and 2021 caused a systems-level response to a small tundra stream that promoted lateral expansion of the creek valley into an ice-rich permafrost hillslope and development of a diffuse network of stream channels expanding the area of potential beaver engineering in the future. The datasets support the findings presented in this accepted paper - Jones, B.M., K.D. Tape, J.A. Clark, A.C. Bondurant, M.K. Ward Jones, B.V. Gaglioti, C.D. Elder, C. Witharana, and C.E. Miller. Accepted. Multi-dimensional remote sensing analysis documents beaver-induced permafrost degradation, Seward Peninsula, Alaska. Remote Sensing. 
    more » « less